35 research outputs found

    Approximating solution structure of the Weighted Sentence Alignment problem

    Full text link
    We study the complexity of approximating solution structure of the bijective weighted sentence alignment problem of DeNero and Klein (2008). In particular, we consider the complexity of finding an alignment that has a significant overlap with an optimal alignment. We discuss ways of representing the solution for the general weighted sentence alignment as well as phrases-to-words alignment problem, and show that computing a string which agrees with the optimal sentence partition on more than half (plus an arbitrarily small polynomial fraction) positions for the phrases-to-words alignment is NP-hard. For the general weighted sentence alignment we obtain such bound from the agreement on a little over 2/3 of the bits. Additionally, we generalize the Hamming distance approximation of a solution structure to approximating it with respect to the edit distance metric, obtaining similar lower bounds

    Expander Construction in VNC1

    Get PDF
    We give a combinatorial analysis (using edge expansion) of a variant of the iterative expander construction due to Reingold, Vadhan, and Wigderson (2002), and show that this analysis can be formalized in the bounded arithmetic system VNC^1 (corresponding to the "NC^1 reasoning"). As a corollary, we prove the assumption made by Jerabek (2011) that a construction of certain bipartite expander graphs can be formalized in VNC^1. This in turn implies that every proof in Gentzen\u27s sequent calculus LK of a monotone sequent can be simulated in the monotone version of LK (MLK) with only polynomial blowup in proof size, strengthening the quasipolynomial simulation result of Atserias, Galesi, and Pudlak (2002)

    Tighter Connections between Derandomization and Circuit Lower Bounds

    Get PDF
    We tighten the connections between circuit lower bounds and derandomization for each of the following three types of derandomization: - general derandomization of promiseBPP (connected to Boolean circuits), - derandomization of Polynomial Identity Testing (PIT) over fixed finite fields (connected to arithmetic circuit lower bounds over the same field), and - derandomization of PIT over the integers (connected to arithmetic circuit lower bounds over the integers). We show how to make these connections uniform equivalences, although at the expense of using somewhat less common versions of complexity classes and for a less studied notion of inclusion. Our main results are as follows: 1. We give the first proof that a non-trivial (nondeterministic subexponential-time) algorithm for PIT over a fixed finite field yields arithmetic circuit lower bounds. 2. We get a similar result for the case of PIT over the integers, strengthening a result of Jansen and Santhanam [JS12] (by removing the need for advice). 3. We derive a Boolean circuit lower bound for NEXP intersect coNEXP from the assumption of sufficiently strong non-deterministic derandomization of promiseBPP (without advice), as well as from the assumed existence of an NP-computable non-empty property of Boolean functions useful for proving superpolynomial circuit lower bounds (in the sense of natural proofs of [RR97]); this strengthens the related results of [IKW02]. 4. Finally, we turn all of these implications into equivalences for appropriately defined promise classes and for a notion of robust inclusion/separation (inspired by [FS11]) that lies between the classical "almost everywhere" and "infinitely often" notions

    Agnostic Learning from Tolerant Natural Proofs

    Get PDF
    We generalize the "learning algorithms from natural properties" framework of [CIKK16] to get agnostic learning algorithms from natural properties with extra features. We show that if a natural property (in the sense of Razborov and Rudich [RR97]) is useful also against functions that are close to the class of "easy" functions, rather than just against "easy" functions, then it can be used to get an agnostic learning algorithm over the uniform distribution with membership queries. * For AC0[q], any prime q (constant-depth circuits of polynomial size, with AND, OR, NOT, and MODq gates of unbounded fanin), which happens to have a natural property with the requisite extra feature by [Raz87, Smo87, RR97], we obtain the first agnostic learning algorithm for AC0[q], for every prime q. Our algorithm runs in randomized quasi-polynomial time, uses membership queries, and outputs a circuit for a given Boolean function f that agrees with f on all but at most polylog(n)*opt fraction of inputs, where opt is the relative distance between f and the closest function h in the class AC0[q]. * For the ideal case, a natural proof of strongly exponential correlation circuit lower bounds against a circuit class C containing AC0[2] (i.e., circuits of size exp(Omega(n)) cannot compute some n-variate function even with exp(-Omega(n)) advantage over random guessing) would yield a polynomial-time query agnostic learning algorithm for C with the approximation error O(opt)

    Lifting for Constant-Depth Circuits and Applications to MCSP

    Get PDF
    Lifting arguments show that the complexity of a function in one model is essentially that of a related function (often the composition of the original function with a small function called a gadget) in a more powerful model. Lifting has been used to prove strong lower bounds in communication complexity, proof complexity, circuit complexity and many other areas. We present a lifting construction for constant depth unbounded fan-in circuits. Given a function f, we construct a function g, so that the depth d+1 circuit complexity of g, with a certain restriction on bottom fan-in, is controlled by the depth d circuit complexity of f, with the same restriction. The function g is defined as f composed with a parity function. With some quantitative losses, average-case and general depth-d circuit complexity can be reduced to circuit complexity with this bottom fan-in restriction. As a consequence, an algorithm to approximate the depth d (for any d > 3) circuit complexity of given (truth tables of) Boolean functions yields an algorithm for approximating the depth 3 circuit complexity of functions, i.e., there are quasi-polynomial time mapping reductions between various gap-versions of AC?-MCSP. Our lifting results rely on a blockwise switching lemma that may be of independent interest. We also show some barriers on improving the efficiency of our reductions: such improvements would yield either surprisingly efficient algorithms for MCSP or stronger than known AC? circuit lower bounds

    Does Looking Inside a Circuit Help?

    Get PDF
    The Black-Box Hypothesisstates that any property of Boolean functions decided efficiently (e.g., in BPP) with inputs represented by circuits can also be decided efficiently in the black-box setting, where an algorithm is given an oracle access to the input function and an upper bound on its circuit size. If this hypothesis is true, then P neq NP. We focus on the consequences of the hypothesis being false, showing that (under general conditions on the structure of a counterexample) it implies a non-trivial algorithm for CSAT. More specifically, we show that if there is a property F of boolean functions such that F has high sensitivity on some input function f of subexponential circuit complexity (which is a sufficient condition for F being a counterexample to the Black-Box Hypothesis), then CSAT is solvable by a subexponential-size circuit family. Moreover, if such a counterexample F is symmetric, then CSAT is in Ppoly. These results provide some evidence towards the conjecture (made in this paper) that the Black-Box Hypothesis is false if and only if CSAT is easy

    Limits of CDCL Learning via Merge Resolution

    Full text link
    In their seminal work, Atserias et al. and independently Pipatsrisawat and Darwiche in 2009 showed that CDCL solvers can simulate resolution proofs with polynomial overhead. However, previous work does not address the tightness of the simulation, i.e., the question of how large this overhead needs to be. In this paper, we address this question by focusing on an important property of proofs generated by CDCL solvers that employ standard learning schemes, namely that the derivation of a learned clause has at least one inference where a literal appears in both premises (aka, a merge literal). Specifically, we show that proofs of this kind can simulate resolution proofs with at most a linear overhead, but there also exist formulas where such overhead is necessary or, more precisely, that there exist formulas with resolution proofs of linear length that require quadratic CDCL proofs

    Limits of CDCL Learning via Merge Resolution

    Get PDF
    In their seminal work, Atserias et al. and independently Pipatsrisawat and Darwiche in 2009 showed that CDCL solvers can simulate resolution proofs with polynomial overhead. However, previous work does not address the tightness of the simulation, i.e., the question of how large this overhead needs to be. In this paper, we address this question by focusing on an important property of proofs generated by CDCL solvers that employ standard learning schemes, namely that the derivation of a learned clause has at least one inference where a literal appears in both premises (aka, a merge literal). Specifically, we show that proofs of this kind can simulate resolution proofs with at most a linear overhead, but there also exist formulas where such overhead is necessary or, more precisely, that there exist formulas with resolution proofs of linear length that require quadratic CDCL proofs

    AC^0[p] Lower Bounds Against MCSP via the Coin Problem

    Get PDF
    Minimum Circuit Size Problem (MCSP) asks to decide if a given truth table of an n-variate boolean function has circuit complexity less than a given parameter s. We prove that MCSP is hard for constant-depth circuits with mod p gates, for any prime p >= 2 (the circuit class AC^0[p]). Namely, we show that MCSP requires d-depth AC^0[p] circuits of size at least exp(N^{0.49/d}), where N=2^n is the size of an input truth table of an n-variate boolean function. Our circuit lower bound proof shows that MCSP can solve the coin problem: distinguish uniformly random N-bit strings from those generated using independent samples from a biased random coin which is 1 with probability 1/2+N^{-0.49}, and 0 otherwise. Solving the coin problem with such parameters is known to require exponentially large AC^0[p] circuits. Moreover, this also implies that MAJORITY is computable by a non-uniform AC^0 circuit of polynomial size that also has MCSP-oracle gates. The latter has a few other consequences for the complexity of MCSP, e.g., we get that any boolean function in NC^1 (i.e., computable by a polynomial-size formula) can also be computed by a non-uniform polynomial-size AC^0 circuit with MCSP-oracle gates

    Stabbing Planes

    Get PDF
    We introduce and develop a new semi-algebraic proof system, called Stabbing Planes that is in the style of DPLL-based modern SAT solvers. As with DPLL, there is only one rule: the current polytope can be subdivided by branching on an inequality and its "integer negation." That is, we can (nondeterministically choose) a hyperplane a x >= b with integer coefficients, which partitions the polytope into three pieces: the points in the polytope satisfying a x >= b, the points satisfying a x <= b-1, and the middle slab b-1 < a x < b. Since the middle slab contains no integer points it can be safely discarded, and the algorithm proceeds recursively on the other two branches. Each path terminates when the current polytope is empty, which is polynomial-time checkable. Among our results, we show somewhat surprisingly that Stabbing Planes can efficiently simulate Cutting Planes, and moreover, is strictly stronger than Cutting Planes under a reasonable conjecture. We prove linear lower bounds on the rank of Stabbing Planes refutations, by adapting a lifting argument in communication complexity
    corecore